A Trust-region Method for Nonsmooth Nonconvex Optimization
نویسندگان
چکیده
منابع مشابه
A Trust Region Method for Nonsmooth Convex Optimization
We propose an iterative method that solves a nonsmooth convex optimization problem by converting the original objective function to a once continuously differentiable function by way of Moreau-Yosida regularization. The proposed method makes use of approximate function and gradient values of the MoreauYosida regularization instead of the corresponding exact values. Under this setting, Fukushima...
متن کاملA Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization
We present a nonsmooth optimization technique for nonconvex maximum eigenvalue functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthesis.
متن کاملTrust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization
We present a non-smooth optimization technique for non-convex maximum eigenvalue functions and for non-smooth functions which are infinite maxima of eigenvalue functions. We prove global convergence of our method in the sense that for an arbitrary starting point, every accumulation point of the sequence of iterates is critical. The method is tested on several problems in feedback control synthe...
متن کاملA Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. The algorithm is ...
متن کاملPenalty Dual Decomposition Method For Nonsmooth Nonconvex Optimization
Many contemporary signal processing, machine learning and wireless communication applications can be formulated as nonconvex nonsmooth optimization problems. Often there is a lack of efficient algorithms for these problems, especially when the optimization variables are nonlinearly coupled in some nonconvex constraints. In this work, we propose an algorithm named penalty dual decomposition (PDD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Mathematics
سال: 2023
ISSN: ['2456-8686']
DOI: https://doi.org/10.4208/jcm.2110-m2020-0317